5681 measured reflections

 $R_{\rm int} = 0.041$ 

1903 independent reflections

1510 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# catena-Poly[[dibromidozinc(II)]-u-4-(3pyridyl)-4H-1,2,4-triazole]

#### Bin Ding\* and Hong-Ai Zou

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China Correspondence e-mail: qsdingbin@yahoo.com.cn

Received 8 June 2010; accepted 2 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.010 Å; R factor = 0.039; wR factor = 0.090; data-to-parameter ratio = 14.9.

The title complex,  $[ZnBr_2(C_7H_6N_4)]_n$ , was formed under hydrothermal conditions using the ligand 4-(3-pyridyl)-4H-1,2,4-triazole (L). The unique  $Zn^{II}$  ion is coordinated by one triazole N atom, one pyridine N atom and two Br atoms in a slightly distorted tetrahedral coordination environment. Symmetry-related  $Zn^{II}$  ions are connected by bridging L ligands into chains parallel to [001] in which the  $Zn \cdots Zn$ separation is 8.643 (7) Å. In the crystal structure, weak intermolecular C-H···Br hydrogen bonds link the chains into a three-dimensional network.

#### **Related literature**

For the preparation of the ligand used to synthesize the title compound, see: Gioia et al. (1988). For background literature on supramolecular polymer chemistry, see: Lehn (1995); Ouahab (1997). For complexes incorporating 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001); Pan et al. (2001); Prior & Rosseinsky (2001); Ma et al. (2001); Ding et al. (2006).



## **Experimental**

#### Crystal data

| $[ZnBr_2(C_7H_6N_4)]$            | $V = 1079.6 (15) \text{ Å}^3$             |
|----------------------------------|-------------------------------------------|
| $M_r = 371.35$                   | Z = 4                                     |
| Monoclinic, $P2_1/c$             | Mo $K\alpha$ radiation                    |
| a = 6.787 (6) Å                  | $\mu = 9.64 \text{ mm}^{-1}$              |
| b = 18.769 (15)  Å               | T = 293  K                                |
| c = 8.643 (7)  Å                 | $0.18 \times 0.12 \times 0.06 \text{ mm}$ |
| $\beta = 101.316 \ (11)^{\circ}$ |                                           |
|                                  |                                           |

#### Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.522, T_{\max} = 1.000$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 128 parameters  $wR(F^2) = 0.090$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^-$ S = 1.10 $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$ 1903 reflections

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - \mathbf{H} \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|------|-------------------------|--------------|---------------------------|
| $C7-H7\cdots Br1^i$       | 0.93 | 2.92                    | 3.711 (7)    | 145                       |
| C6-H6···Br2 <sup>ii</sup> | 0.93 | 2.93                    | 3.779 (8)    | 153                       |

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

This present work was supported financially by Tianjin Educational Committee (20090504).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5068).

#### References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665-675.

Gioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 535-550.

Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspective. Weinheim: VCH.

Ma, B. Q., Gao, S., Sun, H. L. & Xu, G. X. (2001). J. Chem. Soc. Dalton Trans. pp. 130-133.

Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

Ouahab, L. (1997). Chem. Mater. 9, 1909-1926.

Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.

Prior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222-1223.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, m933 [doi:10.1107/S1600536810026188]

# *catena*-Poly[[dibromidozinc(II)]-*µ*-4-(3-pyridyl)-4*H*-1,2,4-triazole]

## B. Ding and H.-A. Zou

#### Comment

Supramolecular polymer chemistry is a branch of modern science which is developing rapidly through the combination of polymer chemistry with supramolecular chemistry (Lehn, 1995; Ouahab, 1997). Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination. The compounds formed are of interest owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensors and indicators (Moulton & Zaworotko, 2001; Pan *et al.*, 2001; Prior & Rosseinsky, 2001; Ma *et al.*, 2001; Ding *et al.*, 2006). We report herein the crystal structure of the title complex.

A view of the coordination around the  $Zn^{II}$  ion of the title compound is shown in Fig. 1. The unique  $Zn^{II}$  ion is coordinated by one triazole nitrogen atom, one pyridine nitrogen atom and two bromine ligands in a slightly distorted tetrahedral coordination environment. Symmetry related  $Zn^{II}$  ions are connected by bridging *L* ligands to form one-dimensional chains (Fig. 2) in which the Zn···Zn separation is 8.643 (7) Å. In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 1) exist between *L* triazole rings and bromine atoms pairs of inversion related 1-D chains, which are further assembled through C—H···Br interactions to form a 3-D network (see Fig. 3).

#### **Experimental**

The ligand *L* was prepared according to the previously reported literature methods (Gioia, *et al.*, 1988). A mixture of ZnBr<sub>2</sub> (22.5 mg, 0.1 mmol), *L* (14.6 mg, 0.1 mmol) and water (10 ml) was stirred for 5 h and filtered. The filtrate was kept in a CaCl<sub>2</sub> desiccator. Suitable single crystals for X-ray diffraction study were obtained after a few days, yield 23% (based on Zn(II) salts). Anal. Calc. for C<sub>7</sub>H<sub>6</sub>Br<sub>2</sub>N<sub>4</sub>Zn: C, 22.64%; H, 1.63%; N, 15.09%. Found: C, 22.75%; H, 1.87%; N, 15.14%. FT—IR (KBr): 3115 (w), 3050 (w), 2940(w), 1540(s), 1473(m), 1395(m), 1368(w), 1244(w), 1199(s), 1075(s), 1030(s), 978(w), 945(w), 869(s), 684(w), 640 (s), 489(m), 425 (w) cm<sub>-1</sub>.

#### Refinement

H atoms were positioned geometrically and were allowed to ride on their parent C atoms with C—H = 0.93Å and  $U_{iso}(H)$  =  $1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. A view of the coordination around the  $Zn^{II}$  ion of the title 1-D compound [symmetry code: (A) x, y, z - 1].



Fig. 2. One-dimensional structure of the title compound

Fig. 3. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.

# catena-Poly[[dibromidozinc(II)]-µ-4-(3-pyridyl)- 4H-1,2,4-triazole]

| Crystal data                   |                                                       |
|--------------------------------|-------------------------------------------------------|
| $[ZnBr_2(C_7H_6N_4)]$          | F(000) = 704                                          |
| $M_r = 371.35$                 | $D_{\rm x} = 2.285 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/c$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 1387 reflections                 |
| a = 6.787 (6)  Å               | $\theta = 2.6 - 24.1^{\circ}$                         |
| b = 18.769 (15)  Å             | $\mu = 9.64 \text{ mm}^{-1}$                          |
| c = 8.643 (7)  Å               | <i>T</i> = 293 K                                      |
| $\beta = 101.316 (11)^{\circ}$ | Block, colorless                                      |
| $V = 1079.6 (15) \text{ Å}^3$  | $0.18\times0.12\times0.06~mm$                         |
| Z = 4                          |                                                       |

### Data collection

| Bruker APEXII<br>diffractometer                                | 1903 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1510 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.041$                                                     |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -7 \rightarrow 8$                                                    |
| $T_{\min} = 0.522, \ T_{\max} = 1.000$                         | $k = -22 \rightarrow 22$                                                  |
| 5681 measured reflections                                      | $l = -10 \rightarrow 7$                                                   |

# Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.090$               | $w = 1/[\sigma^2(F_o^2) + (0.0105P)^2 + 4.1488P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.10                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 1903 reflections                | $\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$                               |
| 128 parameters                  | $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$                          |

0 restraints

Extinction correction: SHELXL97 (Sheldrick, 2008)

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00010 (0)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|-------------|-------------|---------------------------|
| Zn1 | 0.39470 (11) | 0.63872 (4) | 0.68138 (8) | 0.0337 (2)                |
| Br1 | 0.61578 (12) | 0.54147 (4) | 0.76801 (9) | 0.0506 (3)                |
| Br2 | 0.54852 (11) | 0.74575 (4) | 0.62834 (9) | 0.0469 (2)                |
| N1  | 0.2184 (8)   | 0.6476 (3)  | 0.8432 (5)  | 0.0334 (12)               |
| N2  | 0.0687 (8)   | 0.6990 (3)  | 0.8251 (6)  | 0.0435 (14)               |
| N3  | 0.0872 (8)   | 0.6435 (3)  | 1.0539 (5)  | 0.0324 (12)               |
| N4  | 0.1730 (8)   | 0.6178 (3)  | 1.4833 (5)  | 0.0339 (12)               |
| C1  | -0.1373 (10) | 0.5977 (4)  | 1.2212 (8)  | 0.0419 (17)               |
| H1  | -0.2388      | 0.5907      | 1.1332      | 0.050*                    |
| C2  | -0.1642 (11) | 0.5823 (4)  | 1.3737 (8)  | 0.0513 (19)               |
| H2  | -0.2868      | 0.5653      | 1.3907      | 0.062*                    |
| C3  | -0.0079 (10) | 0.5926 (4)  | 1.4974 (8)  | 0.0415 (17)               |
| Н3  | -0.0279      | 0.5815      | 1.5980      | 0.050*                    |
| C4  | 0.2014 (10)  | 0.6340 (3)  | 1.3381 (7)  | 0.0373 (15)               |
| H4  | 0.3248       | 0.6520      | 1.3251      | 0.045*                    |
| C5  | 0.0513 (10)  | 0.6243 (3)  | 1.2085 (7)  | 0.0333 (15)               |
| C6  | -0.0101 (11) | 0.6954 (4)  | 0.9528 (8)  | 0.0451 (17)               |
| Н6  | -0.1155      | 0.7235      | 0.9722      | 0.054*                    |
| C7  | 0.2253 (9)   | 0.6162 (3)  | 0.9792 (7)  | 0.0322 (14)               |
| H7  | 0.3142       | 0.5799      | 1.0188      | 0.039*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| Atomic displacement parameters $(Å^2)$ |            |            |            |             |            |                 |
|----------------------------------------|------------|------------|------------|-------------|------------|-----------------|
|                                        | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | U <sup>23</sup> |
| Zn1                                    | 0.0344 (4) | 0.0455 (5) | 0.0238 (4) | -0.0007 (3) | 0.0122 (3) | 0.0026 (3)      |
| Br1                                    | 0.0527 (5) | 0.0476 (4) | 0.0534 (5) | 0.0094 (4)  | 0.0153 (4) | 0.0096 (3)      |
| Br2                                    | 0.0419 (4) | 0.0489 (4) | 0.0529 (5) | -0.0042 (3) | 0.0168 (3) | 0.0093 (3)      |
| N1                                     | 0.033 (3)  | 0.047 (3)  | 0.021 (2)  | 0.002 (3)   | 0.007 (2)  | 0.003 (2)       |
| N2                                     | 0.042 (4)  | 0.055 (4)  | 0.036 (3)  | 0.011 (3)   | 0.015 (3)  | 0.012 (3)       |
| N3                                     | 0.033 (3)  | 0.045 (3)  | 0.022 (2)  | 0.000 (2)   | 0.010 (2)  | 0.002 (2)       |

# supplementary materials

| N4                     | 0.041 (3)         | 0.042 (3)                | 0.023 (3) | -0.001 (3)         | 0.015 (2) | 0.002 (2)  |
|------------------------|-------------------|--------------------------|-----------|--------------------|-----------|------------|
| C1                     | 0.038 (4)         | 0.057 (4)                | 0.031 (3) | -0.006 (3)         | 0.009 (3) | -0.002 (3) |
| C2                     | 0.044 (5)         | 0.067 (5)                | 0.045 (4) | -0.014 (4)         | 0.014 (4) | 0.002 (4)  |
| C3                     | 0.044 (4)         | 0.054 (4)                | 0.029 (3) | -0.010 (3)         | 0.013 (3) | 0.006 (3)  |
| C4                     | 0.041 (4)         | 0.047 (4)                | 0.029 (3) | -0.002 (3)         | 0.019 (3) | 0.002 (3)  |
| C5                     | 0.042 (4)         | 0.039 (3)                | 0.021 (3) | -0.002 (3)         | 0.013 (3) | -0.003 (3) |
| C6                     | 0.041 (4)         | 0.052 (4)                | 0.046 (4) | 0.011 (3)          | 0.019 (3) | 0.006 (3)  |
| C7                     | 0.036 (4)         | 0.038 (3)                | 0.023 (3) | 0.003 (3)          | 0.008 (3) | 0.000 (3)  |
| Geometric p            | oarameters (Å, °) |                          |           |                    |           |            |
| Zn1—N1                 |                   | 2.018 (5)                | N4-       | -Zn1 <sup>ii</sup> | 2.        | 083 (5)    |
| Zn1—N4 <sup>i</sup>    |                   | 2.083 (5)                | C1-       | -C2                | 1.        | 396 (9)    |
| Zn1 R1<br>Zn1—Br2      |                   | 2 3502 (18)              | C1-       | -C5                | 1         | 397 (9)    |
| Zn1—Br1                |                   | 2.3302(10)<br>2.3880(17) | C1-       | -H1                | 0         | 9300       |
| N1-C7                  |                   | 1.308 (7)                | C2-       | -C3                | 1.        | 364 (9)    |
| N1—N2                  |                   | 1.388 (7)                | C2-       | -H2                | 0.1       | 9300       |
| N2—C6                  |                   | 1.319 (8)                | C3-       | -H3                | 0.        | 9300       |
| N3—C7                  |                   | 1.339 (8)                | C4        | -C5                | 1.1       | 370 (9)    |
| N3—C6                  |                   | 1.386 (8)                | C4—       | -H4                | 0.9       | 9300       |
| N3—C5                  |                   | 1.450 (7)                | С6—       | -H6                | 0.1       | 9300       |
| N4C4                   |                   | 1.341 (7)                | С7—       | -H7                | 0.1       | 9300       |
| N4—C3                  |                   | 1.343 (8)                |           |                    |           |            |
| N1—Zn1—N               | J4 <sup>i</sup>   | 98.9 (2)                 | С3—       | -C2C1              | 11        | 9.0 (6)    |
| N1—Zn1—E               | Br2               | 114.26 (15)              | C3-       | -С2—Н2             | 12        | 20.5       |
| N4 <sup>i</sup> —Zn1—I | Br2               | 106.11 (14)              | C1-       | -С2—Н2             | 12        | 20.5       |
| N1—Zn1—E               | Br1               | 105.51 (15)              | N4        | C3C2               | 12        | 24.2 (6)   |
| N4 <sup>i</sup> —Zn1—I | Br1               | 114.96 (15)              | N4-       | -С3—Н3             | 11        | 7.9        |
| Br2—Zn1—               | Br1               | 116.02 (7)               | C2-       | -С3—Н3             | 11        | 7.9        |
| C7—N1—N2               | 2                 | 108.1 (5)                | N4        | C4C5               | 12        | 20.9 (6)   |
| C7—N1—Zr               | 11                | 131.6 (4)                | N4        | C4H4               | 11        | .9.5       |
| N2—N1—Z1               | n1                | 120.0 (4)                | С5—       | C4H4               | 11        | 9.5        |
| C6—N2—N                | 1                 | 106.1 (5)                | C4        | -C5-C1             | 12        | 21.9 (6)   |
| C7—N3—C6               | 5                 | 104.9 (5)                | C4-       | -C5-N3             | 11        | 9.2 (6)    |
| C7—N3—C3               | 5                 | 127.6 (5)                | C1-       | -C5-N3             | 11        | 8.9 (5)    |
| C6—N3—C5               | 5                 | 127.6 (5)                | N2-       | C6N3               | 11        | 0.0 (6)    |
| C4—N4—C3               | 3                 | 117.8 (6)                | N2-       | -С6—Н6             | 12        | 25.0       |
| C4—N4—Zr               | 11 <sup>ii</sup>  | 120.9 (4)                | N3-       | -С6—Н6             | 12        | 25.0       |
| C3—N4—Zr               | 11 <sup>ii</sup>  | 121.1 (4)                | N1-       | -C7-N3             | 11        | 0.9 (6)    |
| C2-C1-C5               | 5                 | 116.1 (6)                | N1-       | -С7—Н7             | 12        | 24.6       |
| С2—С1—Н                | 1                 | 122.0                    | N3-       | -С7—Н7             | 12        | 24.6       |
| С5—С1—Н                | 1                 | 122.0                    |           |                    |           |            |
| N4 <sup>i</sup> —Zn1—I | N1—C7             | 127.0 (6)                | N4-       | C4C5N3             | 17        | '9.0 (5)   |
| Br2—Zn1—               | N1—C7             | -120.8 (5)               | C2-       | -C1-C5-C4          | 0.        | 6 (10)     |
| Br1—Zn1—               | N1—C7             | 7.9 (6)                  | C2-       | -C1-C5-N3          | -1        | 78.1 (6)   |
| N4 <sup>i</sup> —Zn1—I | N1—N2             | -59.6 (5)                | С7—       | -N3-C5-C4          | 61        |            |
| Br2—Zn1—               | N1—N2             | 52.7 (5)                 | С6—       | -N3—C5—C4          | -1        | 16.6 (7)   |

| Br1—Zn1—N1—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -178.7 (4) | C7—N3—C5—C1  | -119.8 (7) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------|
| C7—N1—N2—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.7 (7)   | C6—N3—C5—C1  | 62.1 (9)   |
| Zn1—N1—N2—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -175.6 (4) | N1—N2—C6—N3  | 0.8 (8)    |
| C5—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.1 (10)  | C7—N3—C6—N2  | -0.6 (7)   |
| C4—N4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 (10)   | C5—N3—C6—N2  | 177.8 (6)  |
| Zn1 <sup>ii</sup> —N4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175.4 (6)  | N2—N1—C7—N3  | 0.3 (7)    |
| C1—C2—C3—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8 (11)   | Zn1—N1—C7—N3 | 174.4 (4)  |
| C3—N4—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.7 (9)   | C6—N3—C7—N1  | 0.2 (7)    |
| Zn1 <sup>ii</sup> —N4—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -176.0 (5) | C5—N3—C7—N1  | -178.3 (6) |
| N4—C4—C5—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4 (10)   |              |            |
| $\mathbf{C} = \mathbf{C} + $ | . 1        |              |            |

Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1.

# *Hydrogen-bond geometry (Å, °)*

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|----------------------------|-------------|-------|--------------|------------|
| C7—H7···Br1 <sup>iii</sup> | 0.93        | 2.92  | 3.711 (7)    | 145        |
| C6—H6···Br2 <sup>iv</sup>  | 0.93        | 2.93  | 3.779 (8)    | 153        |
|                            | a /a / /a   |       |              |            |

Symmetry codes: (iii) -x+1, -y+1, -z+2; (iv) x-1, -y+3/2, z+1/2.







Fig. 2

Fig. 3

